Numerical simulation of fracture mode transition in ductile plates
نویسندگان
چکیده
Fracture mode of ductile solids can vary depending on the history of stress state the material experienced. For example, ductile plates under remote in-plane loading are often found to rupture in mode I or mixed mode I/III. The distinct crack patterns are observed in many different metals and alloys, but until now the underlying physical principles, though highly debated, remain unresolved. Here we show that the existing theories are not capable of capturing the mixed mode I/III due to a missing ingredient in the constitutive equations. We introduce an azimuthal dependent fracture envelope and illustrate that two competing fracture mechanisms, governed by the pressure and the Lode angle of the stress tensor, respectively, exist ahead of the crack tip. Using the continuum damage plasticity model, we demonstrate that the distinctive features of the two crack propagation modes in ductile plates can be reproduced using three dimensional finite element simulations. The magnitude of the tunneling effect and the apparent crack growth resistance are calculated and agree with experimental observations. The finite element mesh size dependences of the fracture mode and the apparent crack growth resistance are also
منابع مشابه
Numerical Modeling of the Ductile-Brittle Transition
Numerical studies of the ductile-brittle transition are described that are based on incorporating physically based models of the competing fracture mechanisms into the material's constitutive relation. An elastic-viscoplastic constitutive relation for a porous plastic solid is used to model ductile fracture by the nucleation and subsequent growth of voids to coalescence. Cleavage is modeled in ...
متن کاملA Cohesive Zone Model for Crack Growth Simulation in AISI 304 Steel
Stable ductile crack growth in 3 mm thick AISI 304 stainless steel specimens has been investigated experimentally and numerically. Multi-linear Isotropic Hardening method coupled with the Von-Mises yield criterion was adopted for modeling elasto-plastic behavior of the material. Mode-I CT fracture specimens have been tested to generate experimental load-displacement-crack growth data during sta...
متن کاملTensile-shear transition in mixed mode I/III fracture
The propensity of the transition of fracture type in either brittle or ductile cracked solid under mixed-mode I and III loading conditions is investigated. A fracture criterion based on the competition of the maximum normal stress and maximum shear stress is utilized. The prediction of the fracture type is determined by comparing smax=rmax at a critical distance from the crack tip to the materi...
متن کاملPredicting Low Cycle Fatigue Life through Simulation of Crack in Cover Plate Welded Beam to Column Connections
This paper presents a low cycle fatigue life curve by simulating a crack in a cover plate welded moment connection. Initiation of ductile fracture in steel is controlled by growth and coalescence of micro-voids. This research used a numerical method using finite element modeling and simulation of ductile crack initiation by a micromechanical model. Therefore, a finite element model of a cover p...
متن کاملDynamic and Quasi-Static Tensile Properties of Structural S400 Steel
The study of mechanical behavior of the structural steel S400 under quasi- static and dynamic loading has been the subject of this investigation. In oder to obtain different stress - triaxiality conditions the specimens were notched with 1, 1.5, 2 and 3.5 mm notch radius. The results of fractography show as the velocity of tension increases, ductility reduces and a ductile-brittle transition oc...
متن کامل